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Abstract 12 

Attention is not constant but fluctuates from moment to moment. Previous studies 13 

dichotomized these fluctuations into optimal and suboptimal states based on behavioral 14 

performance and investigated the difference in brain activity between these states. Although 15 

these studies implicitly assume there are two states, this assumption is not guaranteed. Here, 16 

we reversed the logic of these previous studies and identified unique states of brain activity 17 

during a sustained attention task. We demonstrate a systematic relationship between dynamic 18 

brain activity patterns (brain states) and behavioral underpinnings of sustained attention by 19 

explaining behavior from two dominantly observed brain states. In four independent datasets, 20 

a brain state characterized by default mode network activity was behaviorally optimal and a 21 

brain state characterized by dorsal attention network activity was suboptimal. Thus, our study 22 

provides compelling evidence for behaviorally optimal and suboptimal attentional states from 23 

the sole viewpoint of brain activity. We further demonstrated how these brain states were 24 

impacted by motivation, mind wandering, and attention-deficit hyperactivity disorder. 25 

Within-subject level modulators (motivation and mind wandering) impacted the optimality of 26 

behavior in the suboptimal brain state. In contrast, between-subject level differences (ADHD 27 

vs healthy controls) impacted the optimal brain state character, namely its frequency. 28 
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Introduction 1 

Attention is not constant but fluctuates from moment to moment1-4. The elucidation of the 2 

brain mechanisms required to sustain attention is theoretically important and translationally 3 

relevant5-11. A wealth of previous studies dichotomized these fluctuations into optimal (stable 4 

reaction times, fast reaction times, or fewer attentional lapses/errors) and suboptimal 5 

(variable reaction times, slow reaction times, or more attentional lapses/errors) states based 6 

on behavioral performance and investigated the differences in brain activity between these 7 

behaviorally inferred attentional states6,7,12-21. Almost all studies have reported contrasting 8 

brain-behavior relationships with task negative networks such as default mode network 9 

(DMN) and attention related networks such as dorsal attention network (DAN) and salience 10 

network (SN). In a growing number of studies, optimal performance states were associated 11 

with greater DMN activity, while suboptimal performance states were associated with greater 12 

DAN and SN activity7,18,21,22. Although the directionality of the relationship between brain 13 

activity and sustained attention is controversial in previous studies, such approaches, which 14 

infer mental states based on behavior, are limited by the low dimensionality of behavioral 15 

variables—resulting in blunt methods like dichotomization to identify two separate states 16 

when in reality, brain dynamics may be more complicated. Furthermore, such approaches 17 

rely on frequent responses from participants, and this serves as a strong constraint on the 18 

types of tasks that can be used to identify attentional states. To address these stark limitations 19 

in the literature, we consider whether attentional states can be defined and observed on the 20 

basis of brain activity alone. 21 

Previous studies have also shown relationships between sustained attention ability 22 

and the functional connectivity between functionally different brain systems10,11,18,23. 23 

Functional connectivity is defined as temporal correlation between blood oxygen level 24 

dependent (BOLD) time courses from functional magnetic resonance imaging (fMRI). For 25 

example, participants who have stronger anticorrelation of functional connectivity between 26 
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DMN and DAN/SN tend to perform better (more stable and faster reaction times)19,24. 1 

Individual sustained attention ability also could be predicted by functional connectivity 2 

patterns across entire parcellations of the brain (connectome)10,11,25. Furthermore, fMRI 3 

connectivity neurofeedback training or stimulants such as Methylphenidate have been shown 4 

to induce changes in both functional connectivity and sustained attention performance26,27. 5 

These findings implicate the connectome of functionally different brain systems in supporting 6 

sustained attention ability. Nonetheless, whether and how the connectome relates to sustained 7 

attention performance through the intermediary of their dynamic brain activity patterns 8 

remains unclear28.  9 

Here we used a novel energy landscape analysis29-33 to identify dynamic brain 10 

activity states in a manner that was agnostic to behavior during a sustained attention task. 11 

Energy landscape analysis is a data-driven method for estimating stable brain states under the 12 

constraints of the connectome between functionally different brain systems. We examined the 13 

observed number of states, and whether performance during distinct states corresponded to 14 

behaviorally defined optimal and/or suboptimal state(s)7,18,21. We provided additional support 15 

for these results using an independent validation dataset for replication purposes. To extend 16 

this result, we based an additional set of experiments on studies that have shown sustained 17 

attention is improved by motivation34,35, worsened by mind wandering22, and impaired in 18 

neuropsychiatric disorders of attention such as attention-deficit hyperactivity disorder 19 

(ADHD)6,8-11. It remains unknown whether these positive (motivation) and negative (mind 20 

wandering, neuropsychiatric disorder) modulators directly impact the composition of the 21 

optimal and suboptimal brain states or rather impact the optimality of behavior or likelihood 22 

of reaching a given brain state. Using three additional datasets, we investigated how 23 

motivation, mind wandering, and ADHD impact the character of these brain states (activity 24 

patterns and frequency of these states) and the relationship to performance during these states. 25 

Overall, we demonstrate and validate a novel approach for defining attentional states across 26 
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four independent datasets (see Methods). Further, we provide the first evidence for the 1 

existence of and correspondence between neurally and behaviorally defined optimal and 2 

suboptimal attentional states. Finally, we demonstrate various influences of positive and 3 

negative factors on the character and optimality of these states. 4 

 5 

Results 6 

Local energy minimum brain states during gradual onset continuous performance task. 7 

To investigate the connectome between functionally different brain systems, we first defined 8 

14 region of interests (ROIs) which represent functionally different brain systems (Fig. 1a,b) 9 

by applying dictionary learning36-38 to resting state fMRI with 16 participants (6 males, ages 10 

18–34 years, mean age = 24.1 years). Dictionary learning can extract brain spatial maps that 11 

are naturally sparse and usually cleaner than independent component analysis. We then 12 

prepared a time series of average BOLD time courses of 14 ROIs (functionally different brain 13 

systems) while 16 participants performed the gradual onset continuous performance task 14 

(gradCPT; Dataset 1). GradCPT is a well-validated test of sustained attention, previously 15 

used to define attentional states defined by reaction time variability fluctuations over time7,21. 16 

We then binarized the 14 ROIs’ activity at each time point (by replacing all values above a 17 

mean activation with active and others with inactive within each ROI), fitted a pairwise 18 

maximum entropy model (MEM)31,39 to them, and derived functional connectivity matrices 19 

(connectome) between ROIs and average activation of each ROI. Next, based on the 20 

connectome between functionally different brain systems and average activation of each ROI, 21 

we calculated energy values of all the possible brain activity patterns (214 patterns) (see 22 

Pairwise maximum entropy model section in the Methods). We then examined hierarchal 23 

relationships between the 214 energy values and systematically searched for dominant brain 24 

activity patterns that showed locally minimum energy values that were more likely to be 25 

observed than similar activity patterns29,30,32,33 (Fig. 1c). Please note that this energy value 26 
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does not indicate any biological energy. It is rather a statistical index that indicates the 1 

occurrence probability of each brain activity pattern. For instance, activity patterns with 2 

lower energy values tend to occur more frequently. If dynamic brain activity during gradCPT 3 

can be described as transitions between behaviorally optimal and suboptimal attention states21 4 

(Fig. 1d), such states may correspond to stable brain states which have local energy 5 

minimums. 6 

As a result, we found that 13 stable brain states frequently occurred during gradCPT. 7 

Figure 2a showed the brain activity patterns in the 14 ROIs for the 13 stable brain states. 8 

Figure 2b showed the percentage of dwell time during gradCPT. We found that both State 1 9 

and State 2 occurred about 40% of dwell time during gradCPT indicating that these two brain 10 

states were dominant during the task. State 1 was characterized by DMN activity and State 2 11 

was characterized by DAN and SN activity. 12 

 13 

Figure 1. Procedures of energy landscape analysis. (a) Region of interests (ROIs) 14 

from dictionary learning using resting-state fMRI. These ROIs indicate functionally 15 

different brain regions. Connectome indicates functional connectivity pattern between 16 
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ROIs. (b) BOLD signals extracted from 14 ROIs and behavioral performances in gradual 1 

onset continuous performance task. (c) Energy landscape and local minimums. (d) Brain 2 

state transition in energy landscape. BOLD: Blood oxygen level dependent; VTC: 3 

Variance time course; RT: Reaction time.  4 

 5 

We characterized these dominant brain states by focusing on DMN, DAN and SN (ROI 6, 2, 6 

and 11, respectively), based on the previous studies linking these functionally different brain 7 

systems to fluctuations in sustained attention7,21. We then summarized individual local 8 

minimum brain states into two major brain state categories (DMN-state and DAN-state) and 9 

others. The DMN-state was defined as DMN-active, DAN-inactive, and SN-inactive. The 10 

DAN-state was defined as DMN-inactive along with either or both DAN-active and 11 

SN-active. If local minimum brain state did not fit into the above criteria, we defined such 12 

brain state as “other” （e.g. both DMN and DAN or SN were active or DMN, DAN and SN 13 

were all inactive）. Using these rules, DMN-state and DAN-state covered 48 % and 51% of 14 

total time, respectively (Fig.2b right). We further investigated whether these brain states were 15 

specific to the gradCPT. To this end, we investigated local minimum brain states during 16 

resting state fMRI. These two brain states existed even in resting state, but these were less 17 

dominant, covering 40% and 39% respectively (Figs. 2cd). Furthermore, we confirmed these 18 

two brain states were robust to choice of ROIs (Supplementary Figures 2 and 3)40,41. For 19 

example, when we used the Schaefer et al.40 200 ROIs categorized by networks (7), the only 20 

states found were a DMN-state and a DAN+SN-state even without summarizing 21 

(Supplementary Figures 2). These results indicate that fluctuation of the brain activity during 22 

gradCPT can be described as dynamic transitions between two dominant brain states 23 

represented by DMN, DAN and SN activity patterns. 24 
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 1 

Figure 2. Energetically stable brain states and dwell time during task and rest. (a) 2 

Stable brain states during gradual onset continuous performance task (gradCPT). 3 

Individual state is represented by an activity pattern in which each brain region is active 4 

(green) or inactive (white) state. (b) Left graph shows percentage of dwell time during 5 

gradCPT in each individual state. Blue bars show the state defined as DMN-state, red 6 

bars show the state defined as DAN-state, green bar show the state defined as Others. 7 

Each scatter shows each participant. Right graph shows summation for each summarized 8 

state. (c) Stable brain states during resting state. (d) Percentage of dwell time during 9 

resting state. sgACC: subgenual anterior cingulate cortex; DMN: default mode network; 10 

DAN: dorsal attention network.  11 

 12 

 We then examined behavioral differences in performances between the DMN-state 13 

and DAN-state. We focused on variables commonly used to assess the optimality of sustained 14 

attention, including mean reaction time, mean variance time course (VTC, a measure of 15 

reaction time variability), and accuracy (d prime) as measures of performance (Fig. 1b). We 16 

shifted the time labels of the brain states backwards by 5 seconds to account for the 17 

hemodynamic response lag. We found that mean VTC and d prime were significantly better 18 
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(lower variability and higher accuracy) during timepoints corresponding to the DMN-state 1 

than those in DAN-state (Wilcoxon signed-rank test. Variance time course: W15 = 21, P < 2 

0.016; Reaction time: W15 = 39, P > 0.13; d prime: W15 = 29, P < 0.044, two-sided without 3 

multiple comparisons) (Fig. 3). Furthermore, we confirmed that the behavioral differences in 4 

performances between the DMN-state and DAN-state were robust to choice of ROIs 5 

(Supplementary Figures 2 and 3). These results indicate that participants can maintain more 6 

stable and accurate performance during DMN-state than those during DAN-state. That is, the 7 

DMN-state is a behaviorally optimal state and the DAN-state is behaviorally suboptimal 8 

state.  9 

 10 

Figure 3. Behavioral performance during each state. (a) Mean variance time course. 11 

(b) Reaction time. (c) d prime. Each scatter shows each participant and line connected 12 

the same participant. DMN: default mode network; DAN: dorsal attention network. *P < 13 

0.05. 14 

 15 

Replication using an independent validation dataset. We tested whether optimal and 16 

suboptimal brain states would generalize to another fMRI dataset in which 29 participants (13 17 

males, ages 21–36 years, mean age = 26.4 years) did five gradCPT runs that had a longer 18 

inter-stimulus interval than the original (1300 ms vs. 800 ms per image). Four of five 9-min 19 
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fMRI runs of gradCPT were gradCPT with thought-probe (see Long inter stimulus interval 1 

(ISI) gradCPT dataset (Dataset 2) in the Methods section). Here, we did not use the 2 

thought-probe measurement (but we did subsequently in Investigation of the influence of 3 

additional cognitive and clinical factors section). We applied the identical analysis procedure 4 

to this independent dataset and found consistent results with the previous experiment that the 5 

DMN-state and DAN-state accounted for 49% and 45% of the total scan duration, 6 

respectively (Fig.3b right). Although there appears to be 4 main local minimum states 7 

(Fig.3a), the pair of brain states 2 and 3 as well as the pair of brain states 1 and 4 are different 8 

only in the inclusion or exclusion of the cerebellum ROIs, respectively.  9 

We confirmed that the differences in behavioral performance between during the DMN- 10 

and DAN-states largely replicated in this dataset (Wilcoxon signed-rank test. Variance time 11 

course: W28 = 57, P < 0.00052; Reaction time: W28 = 32, P < 0.000061; d prime: W28 = 73, P 12 

< 0.0018, two-sided without multiple comparisons) (Fig. 3cde). Since this dataset included 13 

more subjects and more sessions than study 1 included, or because of the slower ISI, we 14 

found that mean RT was also faster in the DMN-state. That is, the DMN-state is a 15 

behaviorally optimal state and the DAN-state is behaviorally suboptimal state even in this 16 

independent dataset. 17 
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 1 

Figure 4. Replication using the independent validation dataset. (a) Stable brain states 2 

during long inter-stimulus interval gradual onset continuous performance task (gradCPT). 3 

(b) Percentage of dwell time during long inter-stimulus interval gradCPT. (c) Mean 4 

variance time course during each state. (d) Reaction time during each state. (e) d prime 5 

during each state. Each scatter shows each participant and line connected the same 6 

participant. DMN: default mode network; DAN: dorsal attention network. *P < 0.05. 7 

 8 

Investigation of the influence of additional cognitive and clinical factors. Next, we 9 

investigated how motivation, mind wandering, and ADHD affected sustained attention and 10 

the characteristics of these brain states. There are four possibilities for the impact of these 11 

factors: (1) the factor directly impact the nature of the brain state(s) (alters the brain activity 12 

pattern of brain state), (2) the factor impact the dynamics of the brain state (s) (alters the 13 

dwell time in brain state), (3) the factor impacts performance across both brain states equally, 14 

(4) the factor impacts performance differentially in one brain state. 15 

 16 
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Influence of motivation. First, we investigated how reward-induced motivation affects 1 

performances and brain states using a different fMRI dataset in which 16 participants (10 2 

males, ages = 19–29, mean age = 22 years) performed 3–5 8-min runs of the gradCPT (13 3 

participants completed five runs, 2 completed four runs, and 1 completed three runs) with 4 

performance-based rewards (see gradCPT with reward data set (Dataset 3) in the Methods). 5 

Each 8-min task run was divided into alternating 1-min motivated and unmotivated blocks, 6 

which were differentiated by a continuous color border (green for motivated; blue for 7 

unmotivated). This yielded 4 min of each block-type per run. During the motivated block, 8 

participants earned bonus money for correct responses and lost bonus money for mistakes 9 

and during the unmotivated blocks, no money could be gained or lost. These identical reward 10 

contingencies were shown to produce reliable improvements in accuracy and RT variability 11 

in previous study34, thus a priori, we were certain that these performance-based rewards 12 

modulated sustained attention performance. 13 

We divided all BOLD signals from 14 ROIs into rewarded and unrewarded blocks 14 

and concatenated BOLD signals from all participants for each block. We shifted the time 15 

labels of the brain states backwards by 5 seconds to account for the hemodynamic response. 16 

We then conducted the energy landscape analysis separately in each block and investigated 17 

the stable brain states. As previously found in studies 1 and 2, two dominant brain states were 18 

observed for both block types (Supplementary Figure 4). That is, DMN-state and DAN-state 19 

were dominant in rewarded blocks (DMN-state: 47%, DAN-state: 52%) and unrewarded 20 

block (DMN-state: 49%, DAN-state: 51%) (Fig.5a).  21 

We first verified whether the relationship between brain states and behavior could be 22 

replicated when using only unmotivated block data, akin to studies 1 and 2 (both without 23 

reward). The unmotivated block data is not exactly same as in the first gradCPT dataset 24 

because the unmotivated block data might be actively unmotivated by the presence of the 25 

motivated block. However, we successfully replicated the difference in performance between 26 
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DMN-state and DAN-state state (Wilcoxon signed-rank test. mean VTC: W15 = 5, P < 1 

0.0012; RT: W15 = 15, P < 0.0062; d prime: W15 = 4, P < 0.00094, two-sided without multiple 2 

comparisons) (Fig.5 pale color). The results using only motivated block data are in the Figure 3 

5 and the legend. 4 

We then investigated whether there were significant interactions between brain state and 5 

motivation for dwell time and behavioral performances. We found a significant interaction 6 

effect for dwell time as well as d prime (Mixed effects model [interaction effect between 7 

brain state and motivation]. Dwell time: t60 = -2.03, P < 0.047; d prime: t60 = -2.98, P < 8 

0.0042, two-sided without multiple comparisons) (Fig. 5). d prime was significantly better in 9 

DMN-state than that in DAN-state during unmotivated block (Mixed effects model [effect of 10 

motivation]. t30 = -5.75, P < 5.6 � 10
��, two-sided after Bonferroni correction for two 11 

comparisons [two blocks]), but not during motivated block (Mixed effects model [effect of 12 

motivation]. t30 = -0.23, P > 0.99, two-sided after Bonferroni correction for two comparisons 13 

[two blocks]). This result indicates that motivation could partially overcome the suboptimal 14 

brain state’s impact on performance. On the other hand, despite the dwell time interaction, 15 

there were no significant dwell time differences between motivated and unmotivated blocks 16 

in either brain states (Mixed effects model [effect of motivation]. DMN-state: t30 = 1.91, P > 17 

0.12; DAN-state: t30 = -0.95, P > 0.68, two-sided after Bonferroni correction for two 18 

comparisons [two states]).  19 
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 1 

Figure 5. Effect of motivation on dwell time and behavioral performance. (a) 2 

Percentage of dwell time during each state. (b) Mean variance time course during each 3 

state. (c) Reaction time during each state. (d) d prime during each state. We successfully 4 

replicated the difference in performance between DMN-state and DAN-state state in the 5 

unmotivated block data and partially replicated in the motivated block data (Wilcoxon 6 

signed-rank test. mean VTC: W15 = 24, P < 0.03; RT: W15 = 2, P < 0.00065; d prime: W15 7 

= 53, P > 0.43, two-sided without multiple comparison among performances). *P < 0.05. 8 

 9 

Influence of mind wandering. Second, we investigated the effect of mind wandering using 10 

another fMRI dataset, collected on the same participants from study 2 (part of Dataset 2, see 11 

Long inter stimulus interval (ISI) gradCPT dataset (Dataset 2) in the Methods). This version 12 

of the gradCPT estimated subjects’ self-reported mind wandering degree during gradCPT 13 

using experience sampling approach42. 29 participants performed 4 gradCPT runs during 14 

fMRI, modified here to include thought-probes. Thought-probes appeared pseudorandomly 15 

every 44–60 s (three possible block durations of 44, 52, and 60 s). Upon the thought-probe, a 16 

question was displayed: “To what degree was your focus just on the task or on something 17 

else?” A continuous scale appeared below the question text with far-right and far-left anchors 18 

.CC-BY-NC-ND 4.0 International licenseauthor/funder. It is made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.01.31.928523doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.31.928523
http://creativecommons.org/licenses/by-nc-nd/4.0/


-14- 

 

of only task and only else, respectively. Responses were recorded on a graded scale of 1 

integers (not visible to the subjects) ranging from 0 (only task) to 100 (only else). This 2 

yielded 9 mind wandering degrees every 44-60 s of per run. Following the previous study 3 

using this data22, we focus on ∼30-s preprobe periods to best yoke thought probe ratings to 4 

behaviors. We defined each 30s period as high mind wandering (high MW) periods or low 5 

mind wandering (low MW) periods by performing a median split of the 9 mind wandering 6 

judgements (high MW period: judgement ≥ median judgement). We concatenated these 7 

periods separately and analyzed these as high MW blocks and low MW blocks. 8 

We divided all BOLD signals from 14 ROIs into high MW blocks and low MW 9 

blocks and concatenated BOLD signals from all participants for each block. We shifted the 10 

time labels of the brain states backwards by 5 seconds to account for the hemodynamic 11 

response. We then conducted the energy landscape analysis separately in each block type and 12 

investigated stable brain states. Again, we found two dominant brain states for both blocks 13 

(Supplementary Figure 5). That is, DMN-state and DAN-state were dominant even in high 14 

MW block (DMN-state: 49%, DAN-state: 47%) and low MW block (DMN-state: 49%, 15 

DAN-state: 48%) (Fig.6a).  16 

We then investigated whether there were significant interactions between brain state 17 

and mind wandering for dwell time as well as behavioral performances. We found significant 18 

interactions between brain state and mind wandering for the mean VTC (Mixed effects model 19 

[interaction effect between mind wandering and brain state]. t112 = -2.07, P < 0.042, two 20 

sided without multiple comparisons) (Fig. 6). The difference in the mean VTC between high 21 

and low mind wandering level in DAN-state was significantly larger than that in DMN-state 22 

(Wilcoxon signed-rank test. W28 = 89, P < 0.0055, two-sided). This result indicates that when 23 

participants are in the suboptimal brain state, mind wandering particularly impacts 24 

performance negatively, namely increasing variability of reaction time. 25 
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1 

Figure 6. Effect of mind wandering on dwell time and behavioral performance. (a) 2 

Percentage of dwell time during each state. (b) Mean variance time course during each 3 

state. (c) Reaction time during each state. (d) d prime during each state. *P < 0.05. 4 

 5 

Influence of ADHD. Finally, we investigated the effect of a neuropsychiatric disorder of 6 

attention (ADHD) using another fMRI dataset consisting of 19 adult participants with ADHD 7 

(8 males, ages 18–34 years, mean age = 24 years) who performed the gradCPT with longer 8 

inter-stimulus interval (Dataset 4) (see Long inter stimulus interval (ISI) gradCPT dataset 9 

(Dataset 2) in the Methods). We applied the identical analysis procedure to this ADHD 10 

dataset. We again found two dominant brain states (Supplementary Figure 6). That is, 11 

DMN-state and DAN-state were dominant even in ADHD patients (DMN-state: 49%, 12 

DAN-state: 47%) (Fig.7a). 13 

We further verified the difference of behavioral performances between during 14 

DMN-state and DAN-state (Wilcoxon signed-rank test. Variance time course: W18 = 3.0, P < 15 

0.0002; Reaction time: W18 = 10.0, P < 0.00063; d prime: W18 = 51.0, P > 0.07, two-sided 16 
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without multiple comparisons) (Fig. 7). Although d prime was not significantly different 1 

between DMN-state and DAN-state in ADHD patients, this may be because of lower d prime 2 

overall in ADHD patients than that in heathy controls (DMN-state: ADHD d prime = 2.80, 3 

HC d prime = 3.57; DAN-state: ADHD d prime = 2.72, HC d prime = 3.36). 4 

Using study 2 (non-ADHD controls) as a comparison group, we found a significant 5 

interaction between brain state and group for the dwell time (Mixed effects model 6 

[interaction effect between brain state and group]. t92 = 4.54, P < 1.70 � 10
��, two-sided 7 

without multiple comparisons) (Fig. 7). The dwell times of DAN-state were not significantly 8 

different between ADHD and HC (Mixed effects model [effect of group]. t46 = -1.09, P > 9 

0.56, two-sided after Bonferroni correction for two comparisons [two states]), however the 10 

dwell time of DMN-state was significantly shorter in ADHD patients than in HC (Mixed 11 

effects model [effect of group]. t46 = -7.58, P < 2.46 � 10
��, two-sided after Bonferroni 12 

correction for two comparisons [two states]). This result indicates that individuals with 13 

ADHD spend less time in the optimal DMN-state than that did HCs, while there was no 14 

significant difference in time spent the suboptimal DAN-state. 15 

 16 
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Figure 7. Effect of ADHD on dwell time and behavioral performance. (a) Percentage 1 

of dwell time during each state. (b) Mean variance time course during each state. (c) 2 

Reaction time during each state. (d) d prime during each state. *P < 0.05. 3 

 4 

Discussion 5 

In the present study, we demonstrated a systematic relationship between dynamic brain 6 

activity patterns across the functionally different brain systems and behavioral underpinnings 7 

of sustained attention by explaining behavior from observed brain states. This largely 8 

confirmed previous findings using behaviorally defined states such that behavioral 9 

performance (reaction time variability and accuracy) were superior during a DMN-active 10 

state compared to a DAN/SN-active state. That is, DMN-state reflected a more optimal 11 

attentional state and the DAN-state reflected a more suboptimal attentional state. We 12 

replicated our results in multiple independent datasets. We further revealed the impact of 13 

motivation, which does not change the nature and dynamics of these brain-states but serves to 14 

overcome performance decrements normally associated with the suboptimal state. Conversely, 15 

mind wandering exacerbated the negative impact on performance during the suboptimal state. 16 

Finally, we found that individuals with ADHD did alter the dynamics of the brain state by 17 

decreasing the dwell time spend in the optimal DMN-state relative to healthy controls. 18 

Our results provided evidence for optimal and suboptimal brain states when defining state 19 

independently from behavior. This enabled us to estimate subjects’ attentional states from 20 

brain activity without requiring overt responses from subjects. Since it is relatively difficult to 21 

get frequent and continuous behavior from many naturalistic tasks, as well as from some 22 

patient populations, our attentional states defined by brain activity enhance the ability to track 23 

hidden states of attention and could help better reveal neurobiological mechanisms 24 

underlying disorders of attention.  25 

In this study, behavioral performance was consistently better during the DMN-state than 26 

during DAN-state. This is consistent with several other studies from our lab and others 27 
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demonstrating DMN activity associated with stable and optimal behavior, and DAN/SN 1 

associated with unstable and suboptimal behavior, when states were defined behaviorally21. 2 

On the other hand, since DMN activity more typically represents “off-task” and is related to 3 

mind wandering43, it has been thought that DMN activity has a negative impact on 4 

performance17,20. However, previous studies showed that such relationships are highly 5 

complex, such that spontaneous DMN activity can be related to both mind wandering and 6 

stable “in the zone” performance22. This result indicates that there are multiple possible 7 

neural mechanisms for DMN activity. Consistent with this idea, our results did not find 8 

significant difference in the time occupied by DMN-state between the high mind wandering 9 

blocks and the low mind wandering blocks, suggesting that the difference in the behavioral 10 

performance between the DMN-state and DAN-state could be due to a largely distinct 11 

mechanisms from mind wandering. 12 

Many previous studies have examined differences in brain activity when behavioral 13 

performance was better or worse, without considering the connectome17,20,21,24. Studies have 14 

also examined the relationship between individual differences in the connectome between 15 

functionally different brain systems and sustained attention performance, without considering 16 

the brain activity11,19,23,24. However, whether and how the connectome relates to sustained 17 

attention through the intermediary of their dynamic brain activity has remained unclear28. Our 18 

energy landscape model clarified this relationship, as it indicates that two stable functional 19 

brain systems’ activity patterns with different attentional performance frequently occur under 20 

the constraints of connectome. 21 

On the one hand, our results showed that a positive modulator of sustained attention 22 

(motivation) partially overcomes the negative effect of the suboptimal DAN-state while a 23 

negative modulator of sustained attention (mind wandering) worsens the negative effect in 24 

this suboptimal state. This suggest that within-subject fluctuations in performance are more 25 

malleable during this suboptimal state. Interestingly, our results showed that when in this 26 
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suboptimal brain state, motivation improves d-prime while mind wandering increase RT 1 

variability. This might suggest that mind wandering and motivation affect cognitive 2 

performance during this state via different neural mechanisms (e.g. effect mainly on visual 3 

system or on motor system). This is consistent with the interpretation that intrinsic 4 

fluctuations of performance are largely distinct from other cognitive mechanisms such as 5 

mind wandering and motivation22,34. On the other hand, individuals with ADHD spent less 6 

time in the optimal brain state than healthy controls, while the relationship between brain 7 

states and behavioral performances was comparable across group. These results indicate that 8 

within-subject level modulators (motivation and mind wandering) impact the optimality of 9 

behavior in the suboptimal brain state, rather than characteristics of the brain state itself. In 10 

contrast, between-subject level differences (ADHD vs HC) directly impact the optimal brain 11 

state character, namely its frequency. This may indicate that the optimal brain state is less 12 

susceptible to positive and negative effects at the intraindividual level, but can be related to 13 

interindividual differences in attention ability. As the so-called “in the zone” state may reflect 14 

automated information processing44 and loss awareness of all other things except for task in 15 

progress, the optimal brain state identified in this study may have captured this experience.  16 

The energy landscape created in this study is a type of generative model. Generative 17 

models enables us to simulate a transition of brain state when brain network changes (e.g. 18 

simulation of drug or connectivity neurofeedback effect) or activity of specific brain regions 19 

are inhibited or activated (e.g. simulation of brain stimulation)26,27,45. Therefore, in future 20 

studies it may be possible to determine optimal targets for neurofeedback and brain 21 

stimulation to efficiently remediate and improve sustained attention ability by using our 22 

model27,45-47.  23 

One limitation of our study is the assumption that brain networks themselves are stable. 24 

Recent work suggested a relationship between dynamic functional connectivity and 25 

attentional states, thus networks themselves may reconfigure with attentional fluctuations18,25. 26 
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Novel unsupervised learning techniques, based on Bayesian switching linear dynamical 1 

systems (BSDS), provides an integrated framework for identifying latent brain states and 2 

dynamic brain connectivity during cognitive tasks48. In the future, such advanced techniques 3 

could be used to investigate brain states that take into account dynamic functional 4 

connectivity and relationship between individual brain state and individual behavioral 5 

performance.  6 

In summary, our study is the first to provide evidence for two attentional states, a 7 

behaviorally optimal and suboptimal states, from the viewpoint of brain activity. Additionally, 8 

our study shows that activity patterns across functionally different brain systems could be the 9 

link between prior relationships between functional connectivity (connectome) and sustained 10 

attention. Our results indicate that a within-subject level positive modulator (motivation) and 11 

a negative modulator (mind wandering) impacted task performance within these brain states, 12 

but not the character (composition and frequency) of the brain states themselves. Furthermore, 13 

our results suggest that behavior was more susceptible to cognitive modulators of attention 14 

when in the suboptimal brain state. On the other hand, our results suggest that while the 15 

composition of stable brain states were not different across a between-subject level factor 16 

(individual with ADHD vs healthy controls), the time spent in the optimal brain state was 17 

shorter in ADHD patients than in healthy controls.  18 

We believe this approach has wide ranging implications for neurocognitive and clinical 19 

models of attention, and can set a new methodological and theoretical trajectory for a wealth 20 

of future studies.  21 
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Methods 1 

gradCPT data set (Dataset 1). Participants. Sixteen participants (6 males, ages 18–34 years, mean age = 2 

24.1 years) performed the gradual onset continuous performance task (gradCPT) during functional 3 

magnetic resonance imaging (fMRI). The data used in this study and portions of the methods have been 4 

published21, but the current analyses and results reported have not been published elsewhere. To identify 5 

network level functional region of interests (ROIs), a 6-min resting state fMRI was collected and submitted 6 

to dictionary learning (details below). All participants were right handed, with normal or 7 

corrected-to-normal vision and no reported history of major medical illness, head trauma, neurological, or 8 

psychiatric disorder. The study was approved by the VA Boston Healthcare System IRB, and written 9 

consent was obtained from all participants. 10 

Task Paradigm and Presentation. The gradCPT contained 10 round, grayscale photographs of 11 

mountain scenes and 10 of city scenes. These scenes were randomly presented with 10% mountain and 12 

90% city, without allowing the identical scene to repeat on consecutive trials. Scene images gradually 13 

transitioned from one to the next, using a linear pixel-by-pixel interpolation, with each transition occurring 14 

in 800 ms. Images were projected to participants through a MR compatible goggle system (VisuaStim 15 

Digital, Resonance Technology Inc.), and subtended a radius of 2.2° of visual angle. Participants were 16 

instructed to press a button for each city scene, and withhold responses to mountain scenes. Response 17 

accuracy was emphasized without reference to speed. However, given that the next stimulus would replace 18 

the current stimulus in 800 ms, a response deadline was implicit in the task. 19 

Behavioral analysis: Reaction time. Reaction times (RT) were calculated relative to the 20 

beginning of each image transition, such that an RT of 800 ms indicates a button press at the moment 21 

image n was 100% coherent and not mixed with other images. A shorter RT indicates that the current scene 22 

was still in the process of transitioning from the previous, and a longer RT indicates that the current scene 23 

was in the process of transitioning to the subsequent scene. So, for example, an RT of 720 ms would be at 24 

the moment of 90% image n and 10% image n − 1, and so forth. On rare trials with highly deviant RTs 25 

(before 70% coherence of image n and after 40% coherence of image n + 1) or multiple button presses, an 26 

iterative algorithm maximized correct responses as follows. The algorithm first assigned unambiguous 27 

correct responses, leaving few ambiguous button presses (presses before 70% coherence of the current 28 

scene and after 40% coherence of the following scene or multiple presses occurred on < 5% of trials). 29 

Second, ambiguous presses were assigned to an adjacent trial if 1 of the 2 had no response. If both adjacent 30 

trials had no response, the press was assigned to the closest trial, unless one was a no-go target, in which 31 

case subjects were given the benefit of the doubt that they correctly omitted. Finally, if there were multiple 32 

presses that could be assigned to any 1 trial, the fastest response was selected. Slight variations to this 33 

algorithm yielded highly similar results, as most button presses showed a 1–1 correspondence with 34 

presented images. 35 

Behavioral analysis: Variance time course. Beyond mean RT and error rates, we were 36 

particularly interested in trial-to-trial variation in RT, which we assessed via a novel within subject analysis 37 

that we called the variance time course (VTC)21. VTCs were computed from the ∼500 correct responses in 38 

each run (following z-transformation of RTs within-subject to normalize the scale of the VTC), where the 39 

value assigned to each trial represented the absolute deviation of the trial’s RT from the mean RT of the run. 40 
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We reasoned that deviant RTs, whether fast or slow, represented reduced attention to the task as follows: 1 

extremely fast RTs often indicate premature responding and inattention to the potential need for response 2 

inhibition 49, while extremely slow RTs might indicate reduced attention to or inefficient processing of the 3 

ongoing stream of visual stimuli, requiring more time to accurately discriminate scenes17. Values for trials 4 

without responses (omission errors and correct trials) were interpolated linearly, such that the missing 5 

values were linearly estimated from RTs of the 2 surrounding trials. A smoothed VTC was computed using 6 

a Gaussian kernel of 9 trials (∼7 s) full-width at half-maximum (FWHM), thus integrating information 7 

from the surrounding 20 trials, or 16 s, via a weighted average. This choice was based on prior work 8 

linking fluctuations around this frequency to attentional impairments50.  9 

MRI Acquisition. Scanning was performed on a 3T Siemens MAGNETOM Trio system equipped 10 

with a 12-channel head coil, at the VA Boston Neuroimaging Research Center. Functional runs included 11 

248 (gradCPT) or 188 (resting state) whole-brain volumes acquired using an echo-planar imaging 12 

sequence with the following parameters: repetition time (TR) = 2000 ms, echo time (TE) = 30 ms, flip 13 

angle = 90°, acquisition matrix = 64 × 64, in-plane resolution = 3.0 mm2, 33 oblique slices, slice thickness 14 

= 3, 0.75 mm gap. MPRAGE parameters were as follows: TE = 3.32, TR = 2530 ms, flip angle = 7°, 15 

acquisition matrix = 256 × 256, in-plane resolution = 1.0 mm2, 176 sagittal slices, slice thickness = 1.0 16 

mm.  17 

fMRI analysis: Preprocessing of fMRI. We performed preprocessing of the fMRI data using 18 

FMRIPREP version 1.3.0 51. Preprocessing steps included realignment, coregistration, segmentation of 19 

T1-weighted structural images, normalization to Montreal Neurological Institute (MNI) space. For more 20 

details of the pipeline, see http://fmriprep.readthedocs.io/en/latest/workflows.html. 21 

Parcellation of brain regions: Dictionary learning. We identified functionally different brain 22 

systems to use as functional ROIs from the whole brain by applying dictionary learning to resting state 23 

fMRI data 36-38. We first concatenated all participants’ resting state fMRI and then applied dictionary 24 

learning implemented in Nilearn52. Dictionary learning is a sparse based decomposition method for 25 

extracting spatial maps. We set the number of components as 20. We used spatial smoothing with an 26 

isotropic Gaussian kernel of 6 mm full-width at half-maximum. A temporal bandpass filter was applied to 27 

the time series using a first-order Butterworth filter with a pass band between 0.01 Hz and 0.08 Hz to 28 

restrict the analysis to low-frequency fluctuations, which are characteristic of resting state fMRI BOLD 29 

activity53. The BOLD signal time courses were extracted from these 20 ROIs. We visually inspected 5 30 

ROIs which were considered as noise and an auditory related ROI which were not related to our current 31 

task and excluded from our current analysis. We finally used 14 ROIs for all analysis (Fig. 1a). 32 

Physiological noise regression: Physiological noise regressors were extracted by applying 33 

CompCor54. Principal components were estimated for the anatomical CompCor (aCompCor). A mask to 34 

exclude signals with a cortical origin was obtained by eroding the brain mask and ensuring that it 35 

contained subcortical structures only. Six aCompCor components were calculated within the intersection of 36 

the subcortical mask and union of the CSF and WM masks calculated in T1-weighted image space after 37 

their projection to the native space of functional images in each session. Furthermore, to isolate the effect 38 

of each trial type (commission error, correct omission, correct commission, omission error) as well as 39 

trial-to-trial RT, we included mean evoked response for each trial type and trial-to-trial RT. We estimated 40 
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BOLD response time courses of each event type by using hemodynamic_models function implemented in 1 

Nistat (https://nistats.github.io/). To remove several sources of spurious variance, we used linear regression 2 

with eighteen regression parameters, including six motion parameters, average signal over the whole brain, 3 

six aCompCor components, estimated BOLD response time course of each event type, and estimated 4 

BOLD response time course of trial-to-trial RT. 5 

Pairwise maximum entropy model. We fitted the pairwise Maximum entropy model (MEM) to 6 

the preprocessed BOLD signals as follows in the same manner as that employed in the previous 7 

studies29-33,39. We used open toolbox so called Energy Landscape Analysis Toolkit (ELAT) 8 

(https://sites.google.com/site/ezakitakahiro/software). Since this method cannot be applied to relatively 9 

large amount of data30, to achieve a high accuracy of fitting we had to reduce the number of ROIs to 14 10 

ROIs of 20 ROIs excluding 6 ROIs which seemed to be visually noise or auditory related components. For 11 

each ROI, we first binarized the obtained fMRI signals with a threshold that was defined as the 12 

time-averaged activity of the same ROI. We then concatenated BOLD signals from all participants for each 13 

ROI. Previous studies suggest that binarization does not eliminate important information contained in 14 

originally continuous brain signals 31,32,39. In this method, the binarized activity ��
� at ROI i and discrete 15 

time t is either active or inactive (+1 or 0). The activity pattern at time t is described by 16 

�� �  ���
�, ��

�, … , ��
� �� where N (=14) is the number of the ROIs. The k th brain activity pattern is described 17 

by �� 	
 � 1, 2, … , 2�. Specifically, when the empirical activation of ROI i, ����, and the empirical 18 

pairwise activation of ROIs i and j, ������, are estimated from the data, the probability distribution of the k 19 

th brain activity pattern with the largest entropy is the Boltzmann distribution 55. Here, ���� is equal to 20 

	1/� ∑ ��
�	

�
�  and ������ is equal to 	1/� ∑ ��
���

�	
�
� , where T is the number of volume. That is, 21 

�	�� � �����/ ∑ ��������

�
� , where �	��  is the energy of activity pattern ��  and is given by 22 

�	�� � � ∑ ����	���
�
� �

�

�
∑ ∑ �����	����	���

�
�,���
�
�
� . Here, ��	��  represents the binarized 23 

activity (+1 or 0) at region i under activity pattern �� . Technically, ��  and ���  in the Boltzmann 24 

distribution were adjusted until the model-based mean ROI activity ����� � ∑ ��	���	��
��

�
�  and 25 

model-based mean pairwise interaction ������� � ∑ ��	����	���	��
��

�
�  were approximately equal to 26 

the empirically obtained ���� and ������. 27 

Energy landscape analysis. We calculated the energy landscape as done in the previous 28 

studies29,30,32,33. The energy landscape is defined as a network of brain activity patterns ��  with the 29 

corresponding energy �	��. Two activity patterns are regarded as adjacent in the network if and only if 30 

they take the opposite binary activity at just one brain region. We first exhaustively searched for local 31 

energy minimums, whose energy values are smaller than those of all the N adjacent patterns. We then 32 

summarized the all brain activity patterns into local minimum brain states. We first selected a starting brain 33 

activity pattern i among the 2� brain activity patterns. Then, if any of its neighbor patterns has a smaller 34 

value of energy than pattern i, we moved to the neighbor pattern with the smallest energy value. Otherwise, 35 

we did not move, which implied that pattern i was a local minimum. We repeated this procedure until 36 

arrived at a local minimum. The starting pattern i was regarded to belong to the local minimum that was 37 

finally reached. We estimated the corresponding local minimum for all brain activity patterns.  38 

Brain behavior relationship analysis. By regarding local minimum brain activity patterns as 39 

brain states, all participants have a brain state transition and behavioral time series (Fig. 1b). Thus, we can 40 
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calculate behavioral performance during each brain state. We shifted the time labels of the brain state time 1 

series backwards by 5 s to account for the hemodynamic response. In addition to RT and VTC, we 2 

calculated performance accuracy (d prime). d prime was calculated as z(hit rate) − z(false alarm rate) 3 

during each brain state. Here z is normal probability density function in SciPy56. 4 

 5 

Long inter stimulus interval (ISI) gradCPT dataset (Dataset 2). Participants. 29 participants (13 males, 6 

ages 21–36 years, mean age = 26.4 years) performed the long inter-stimulus interval (ISI) gradCPT (1300 7 

ms vs. 800 ms per image) during fMRI. Subjects completed the following sequence of runs with short 8 

breaks separating each (lasting a total of 1.5–2 h): one multi-echo T1-weighted run, one resting-state fMRI 9 

run, one long ISI gradCPT run followed by four long ISI gradCPT runs with intermittent thought-probes. 10 

The data used in this study and portions of the methods have been published22, but the current analyses and 11 

results reported have not been published elsewhere. Subjects were screened by phone and at an initial visit 12 

before the day of neuroimaging, where subjects were also trained on performing the long ISI gradCPT. 13 

Exclusion criteria were as follows: current mood, psychotic, anxiety (excluding simple phobias) or 14 

attention-deficit/hyperactivity disorder, current use of psychotropic medication, full-scale IQ less than 80, 15 

neurological disorders, sensorimotor handicaps, current alcohol or substance abuse/dependence, and 16 

claustrophobia. Furthermore, 19 ADHD patients (8 males, ages 18–34 years, mean age = 24 years) also 17 

performed the long ISI gradCPT during fMRI data collection (Dataset 4). We used one long ISI gradCPT 18 

run in conjunction with four long ISI gradCPT runs with thought-probes for replication analysis but used 19 

only the four long ISI gradCPT runs with thought-probes for investigating mind wandering effect. 20 

Task Paradigm and Presentation. In four long ISI gradCPT runs with thought-probes, 21 

participants performed the gradCPT, modified here to include thought-probes. The following script was 22 

used during training on a computer (outside the scanner) to instruct participants in how to respond to the 23 

thought-probes: Thought-probes appeared pseudo-randomly every 44–60 s (three possible block durations 24 

of 44, 52, and 60 s). Rather than gradually transitioning into another scene image, the last scene before the 25 

thought-probe faded into a scrambled image (to give subjects a similar amount of time to respond as in 26 

other trials). Upon the thought-probe, a question was displayed: “To what degree was your focus just on 27 

the task or on something else?” A continuous scale appeared below the question text with far-right and 28 

far-left anchors of only task and only else, respectively. Subjects pressed buttons with their middle and 29 

ring fingers to move the scale left and right, respectively, and with their thumb to enter their response. 30 

Responses were recorded on a graded scale of integers (not visible to the subjects) ranging from 0 (only 31 

task) to 100 (only else). A second self-paced question screen about meta-awareness of task-related focus 32 

(“To what degree were you aware of where your focus was?”) appeared after the thought-probe, but 33 

responses for this second question were not included in the present analyses. The gradCPT immediately 34 

resumed after subjects entered their question responses (except for the last thought-probe in the run). 35 

Scanning was manually stopped after each gradCPT thought-probe run.  36 

MRI Acquisition. Functional and anatomical MRIs were acquired on the 3T Siemens 37 

CONNECTOM scanner with a custom-made 64-channel phased array head coil, housed at the Athinoula A. 38 

Martinos Center for Biomedical Imaging. The T2*-weighted whole-brain fMRI runs were performed with 39 

multiband, echo-planar imaging (simultaneous multislice factor of 4) and the following parameters: 40 
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repetition time (TR), 1.08 s; echo time (TE), 30 ms; flip angle, 60°; field of view (FoV), 110 mm2; 68 1 

transverse slices; 2 mm isotropic voxels. The T1-weighted scan parameters were as follows: TR, 2,530 ms; 2 

TE, 1.15 ms; inversion time (TI), 1,100 ms; flip angle, 7°; FoV, 256 mm2; 1 mm isotropic voxels. 3 

 4 

gradCPT with reward data set (Dataset 3). Participants. Sixteen participants (10 males, ages = 19–29, 5 

mean age = 22 years) completed 3–5 8-min runs of the gradCPT (13 participants completed five runs, 2 6 

completed four runs, and 1 completed three runs) during fMRI. The data used in this study and portions of 7 

the methods have been published34, but the current analyses and results reported have not been published 8 

elsewhere. Fourteen participants were right-handed and all were considered healthy, had normal or 9 

corrected-to-normal vision, and no reported history of major illness, head trauma, or 10 

neurological/psychiatric disorders. All were screened to confirm no metallic implants or history of 11 

claustrophobia. Drug/medication use was not explicitly assessed. The study protocol was approved by the 12 

VA Boston Healthcare System Institutional Review Board, and all participants gave written informed 13 

consent 14 

Task Paradigm and Presentation. In the gradCPT with reward data set, each 8-min task run was 15 

divided into alternating 1-min rewarded and unrewarded blocks, which were differentiated by a continuous 16 

color border (green for rewarded; blue for unrewarded). To have the background colors be more intuitive 17 

and avoid confusion, “green” was chosen for rewarded blocks in all participants rather than 18 

counterbalancing green and blue colors. This yielded 4 min of each block-type per run. Similar to our 19 

previous study35, participants earned $0.01 for correctly pressing to city scenes and $0.10 for correctly 20 

withholding a response to mountain scenes during rewarded blocks. However, if a participant failed to 21 

press to a city scene, they would lose $0.01, and if a participant incorrectly pressed to a mountain scene 22 

they would lose $0.10. During the unrewarded blocks, no money could be gained or lost. These identical 23 

reward contingencies were shown to produce reliable improvements in accuracy and RT variability in our 24 

recent study with 54 participants35, and in previously published work with this data34, thus a priori, we 25 

were certain the payoff matrix successfully modulated sustained attention performance.  26 

MRI Acquisition. Scanning was performed on a 3T Siemens MAGNETOM Trio system equipped 27 

with a 32-channel head coil at the VA Boston Neuroimaging Research Center for Veterans (NeRVe). Each 28 

gradCPT functional run included 248 whole-brain volumes acquired using an echo-planar imaging 29 

sequence with the following parameters: TR = 2000 ms, TE = 30 ms, flip angle = 90°, acquisition matrix = 30 

64 × 64, in-plane resolution = 3.0 × 3.0 mm2, 33 oblique slices aligned to the anterior and posterior 31 

commissures, slice thickness = 3mm with a 0.75mm gap. MP-RAGE sequence parameters were as follows: 32 

TE = 3.32 ms, TR = 2530 ms, flip angle = 7°, acquisition matrix = 256 × 256, in-plane resolution = 33 

1.0mm2, 176 sagittal slices, slice thickness = 1.0 mm. 34 

 35 

Code availability. All codes used in the analyses are available from the authors on request.  36 
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